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Abstract This article deals with simultaneous measurements of three mutually
orthogonal thermal diffusivities of a material with orthogonal anisotropy using the
flash method. Unlike the conventional flash method, the modified measuring tech-
nique considers pulse heating over a rectangular area of the front face of a wall-shaped
sample of an orthotropic composite material. The thermal diffusivities are calculated
analyzing the temperature rise versus time evolutions when measured simultaneously
at various positions on the sample surface. This article presents a data reduction method
that enables estimates of the thermal diffusivities for the three principal axes. The the-
ory takes into account heat losses from the front and rear faces. The results of an
experimental design analysis are discussed.

Keywords Data reduction · Laser-flash method · Orthogonal anisotropy ·
Sensitivity · Thermal diffusivity

1 Introduction

The flash method [1] has become the most popular experimental method for mea-
suring the thermal diffusivity. In this method, the front face of a small wall-shaped
sample receives a pulse of radiant energy coming from either a laser or a flash lamp.
The thermal diffusivity value is computed from the resulting temperature response on
the opposite (rear) face of the sample. Although the method was originally developed
for measurement of homogeneous isotropic opaque materials, it has been success-
fully applied to advanced materials—composites, layered structures, semitransparent
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media, and materials with a significant dependence of the thermophysical properties
on temperature [2–4].

The radial heat flow modification of the flash method enables simultaneous mea-
surements of the axial thermal diffusivity (across the sample) and the radial thermal
diffusivity (parallel to the front and rear surfaces) of an anisotropic material with
cylindrical symmetry. The technique uses a heat pulse induced by irradiating the sam-
ple front face in a central circular area of radius smaller than the sample radius. The

Fig. 1 Upper-right-hand
quadrant of the parallelepiped
considered in the analytical
model and the positions of
thermocouples in experiment

Fig. 2 Functions �1, �2, �3, R21, S21, D12, R23, S23, D23 at e/b = 0.2, H = 1, ax /az = 0.2,
ay/az = 1, �̄b = 0.1; normal line: x̄ = 0.1, small-dotted line: x̄ = 0.2
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Fig. 3 Functions �1, �2, �3, R21, S21, D12, R23, S23, D23 at e/b = 0.2, H = 1, ax /az = 0.2,
ay/az = 1, �̄b = 0.2; normal line: x̄ = 0.2, small-dotted line: x̄ = 0.3

temperature response is monitored on the rear face at two different distances from the
center. Both axial and radial thermal diffusivities are simultaneously deduced from
the recorded experimental temperature versus time data [5,6].

To overcome the significant influence of the temperature sensor position on the
estimation of the radial diffusivity [7], an application of further detectors has been
proposed [8]. Another method uses adjustment of the position of the detector in the
data reduction procedure [9]. An optimal design of the experiment has been performed
as well [10].

A generalization of the flash technique for measurement of three mutually orthog-
onal thermal diffusivities in orthotropic finite and semi-infinite solids has been elabo-
rated [11]. In this method, a central square area of the sample front face is irradiated,
and the temperature response is monitored on the rear face at different locations. As
demonstrated, the ratio of these temperature evolutions gives sufficient information to
measure an in-plane thermal diffusivity. The primary interest for preferring this kind
of an orthotropic model to that based on the cylindrical symmetry assumption derives
from the fact that the model is much more suitable for investigating oriented composite
structures, i.e., materials reinforced with fibers. An analytical model that takes into
account heat transfer between the sample and its environment has been derived [12].
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Fig. 4 Functions �1, �2, �3, R21, S21, D12, R23, S23, D23 at e/b = 0.2, H = 1, ax /az = 1, ay/az = 1,
�̄b = 0.1; normal line: x̄ = 0.1, small-dotted line: x̄ = 0.2, dotted line: x̄ = 0.3

This article deals with simultaneous estimation of thermal diffusivities in an
orthotropic material for all the three principal axes. This method uses the theory
that takes into account of heat losses from the front and rear faces of the sample. An
optimal experimental design is analyzed and discussed.

2 Theory

Let us consider an orthotropic parallelepiped of length 2b, width 2c, and thickness e
initially at constant zero temperature. Let the geometric axes conform to the principal
axes of the orthotropic material of thermal diffusivities ax , ay , and az . Let the heated
area be a rectangle of size 2�b × 2�c, located symmetrically around the center of
the front face (z = 0), its sides in parallel with x and y axes. Let it be subjected to
an instantaneous heat pulse of energy Q at time t = 0. Because of the symmetry
along the x and y axes, we consider only the upper-right quadrant of the sample, i.e.,
the parallelepiped of b × c and thickness e (Fig. 1). It is assumed that the surfaces at
x = 0, x = b, y = 0, and y = c are thermally insulated, and that there are equal heat
losses at z = 0 and z = e governed by the Biot number H(H = he/kz , where h is
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Fig. 5 Functions �1, �2, �3, R21, S21, D12, R23, S23, D23 at e/b = 0.2, H = 1, ax /az = 1, ay/az = 1,
�̄b = 0.2; normal line: x̄ = 0.2, small-dotted line: x̄ = 0.3, dotted line: x̄ = 0.4

the heat transfer coefficient and kz is the thermal conductivity in the z direction). The
dimensionless temperature rise � of the parallelepiped conforms to [12]

�(x̄, ȳ, z̄, t) = T (x̄, ȳ, z̄, t)
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=

[
1 + 2

∞∑
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(
kπ�̄b

)
kπ�̄b

exp
(
−π2k2tx

)]

×
[

1 + 2
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m=1

cos (mπ ȳ)
sin

(
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)
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(
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×
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an

[
cos (un z̄) + H

un
sin (un z̄)

]
exp

(
−u2

ntz
)

(1)

where T is the temperature rise, Tlim = Q/ρcabe is the adiabatic limit tempera-
ture rise, i.e., the temperature the sample reaches for the case of adiabatic boundary
conditions, ρ is the density, c is the heat capacity,
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Fig. 6 Functions �1, �2, �3, R21, S21, D12, R23, S23, D23 at e/b = 0.2, H = 1, ax /az = 5, ay/az = 1,
�̄b = 0.1; normal line: x̄ = 0.1, small-dotted line: x̄ = 0.2, dotted line: x̄ = 0.3, dashed line: x̄ = 0.4,
dashed-dotted line: x̄ = 0.5
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e
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n

u2
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. (6)

un is the nth positive root of

(u2 − H2) tan(u) = 2Hu. (7)
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Fig. 7 Functions �1, �2, �3, R21, S21, D12, R23, S23, D23 at e/b = 0.2, H = 1, ax /az = 5, ay/az = 1,
�̄b = 0.2; normal line: x̄ = 0.2, small-dotted line: x̄ = 0.3, dotted line: x̄ = 0.4, dashed line: x̄ = 0.5,
dashed-dotted line: x̄ = 0.6, dashed-dotted-dotted line: x̄ = 0.7

We note that the dimensionless temperature rise � achieves the steady-state
limiting value equal to one in the case of negligible heat losses (H = 0) after long
time (t → ∞).

Equation 1 is the working equation for data reduction, i.e., calculation of the ther-
mal diffusivities. For practical reasons, it is much easier to set the screening for the
heat pulse than to adjust the pulse energy over a wide range.

3 Principles of the Measurement

The estimation of thermal diffusivities ax , ay , and az requires knowledge of the tem-
perature response after the heat pulse is irradiated on the front face. Because of sample
geometry and symmetry of Eq. 1, we describe the estimation of the thermal diffusiv-
ity in two directions only–the in-plane thermal diffusivity ax and the cross thermal
diffusivity az . The estimation of the in-plane diffusivity ay can be made in the same
way as the estimation of the diffusivity ax .
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Fig. 8 Functions �1, �2, �3, R21, S21, D12, R23, S23, D23 at e/b = 0.2, H = 0.1, ax /az = 0.2,
ay/az = 1, �̄b = 0.1; normal line: x̄ = 0.1, small-dotted line: x̄ = 0.2, dotted line: x̄ = 0.3

The proposed method considers three temperature sensors (thermocouples) TC1,
TC2, and TC3 located at positions [0, 0, 1], [x̄, 0, 1], and [x̄, 0, 0] (0 < x̄ < 1), respec-
tively as shown in Fig. 1. Position TC1 corresponds to the center of the sample rear
face. TC2 and TC3 are located on the x-axis on the rear and front faces, respectively.
Let temperatures T1, T2, and T3 correspond to those measured by sensors TC1, TC2,
and TC3. Using Eqs. 1–7, ratios R21 = T2/T1 and R23 = T2/T3 can be expressed as
follows:

R21
(
�̄b, x̄, tz

) = T2

T1
= �2

�1
=

1 + 2
∑∞

k=1 cos (kπ x̄)
sin(kπ�̄b)

kπ�̄b
exp

(
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e2
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∑∞
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) ,

(8)
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) . (9)
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Fig. 9 Functions �1, �2, �3, R21, S21, D12, R23, S23, D23 at e/b = 0.2, H = 0.1, ax /az = 0.2,
ay/az = 1, �̄b = 0.2; normal line: x̄ = 0.2, small-dotted line: x̄ = 0.3, dotted line: x̄ = 0.4

The sensitivity of R21 to ax is

S21
(
�̄b, x̄, tz

) = ∂ R21

∂ax
ax = ∂ R21

∂t x

∂t x

∂ax
ax = ∂ R21

∂t x
tx = ∂ R21

∂t z

∂t z

∂t x
tx = ∂ R21

∂t z
t z, (10)

and the sensitivity of R23 to az is

S23 (H, tz) = ∂ R23

∂az
az = ∂ R23

∂tz

∂tz
∂az

az = ∂ R23

∂tz

t

b2 az = ∂ R23

∂tz
tz . (11)

We consider a sample with square faces (b = c) of maximum ratio e/b = 0.2. (The
area of the sides is 1/6 = 16.67 % of the entire surface.).

We assume H ranges from 0 to 1, and sensitivity ratios ax/az , ay/az , and ax/ay

range from 1/5 to 5/1 each. The worst case is when ax/az = 1/5 = 0.2, ay/az = 1
(most of the heat diffuses in y direction), and H = 1 (big heat losses from the faces).
There is a question then whether temperatures rises T1, T2, and T3 are large enough to
be measured in the experiment.
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Fig. 10 Functions �1, �2, �3, R21, S21, D12, R23, S23, D23 at e/b = 0.2, H = 0.1, ax /az = 1,
ay/az = 1, �̄b = 0.1; normal line: x̄ = 0.1, small-dotted line: x̄ = 0.2, dotted line: x̄ = 0.3, dashed line:
x̄ = 0.4

We assume that the delivered energy Q is sufficient to cause Tlim to be measurable,
which means that � = 1 is measurable. The most interesting time points are tz S21 max
and tz S23 max, when sensitivities S21 and S23 reach a maximum. Then, functions �1,
�2, and �3 have to produce values around 1 to be measurable. Moreover, we introduce
checking functions D12 = �1 −�2 and D32 = �3 −�2 that have to satisfy this rule,
as well.

Functions R21, R23, S21, and S23 (Eqs. 8–11) do not depend on the delivered energy
Q, but temperatures T1, T2, and T3 do. If we consider a constant planar energy flow
from the source, then enlarging �̄b twice causes an increase in Q, and consequently
the temperatures by a factor of four. We apply this rule for computing �1, �2, �3,
D12, and D32 to simulate the real heating, starting at reference point �̄b = 0.1.

Let e/b = 0.2, ax/az = 0.2, 1, 5, respectively, ay/az = 1, H = 1, 0.1, respec-
tively, �̄b varies from 0.1 to 0.9, and x̄ varies from �̄b + 0.1 to 1 for each �̄b. We are
looking for maximum S21, S23 at measurable �1, �2, �3, D12, and D32. The analysis
is shown in Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14. In most cases, a smaller heating
area causes more sensible measurements of the radial diffusivities (with respect to the
measurability of the temperatures). In most cases, we can take �̄b = 0.1 and x̄ = 0.2
for the optimal values. Then S21 max ≈ 0.3 and S23 max ≈ 0.7. For larger �̄b and x̄ ,S21
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Fig. 11 Functions �1, �2, �3, R21, S21, D12, R23, S23, D23 at e/b = 0.2, H = 0.1, ax /az = 1,
ay/az = 1, �̄b = 0.2; normal line: x̄ = 0.2, small-dotted line: x̄ = 0.3, dotted line: x̄ = 0.4, dashed line:
x̄ = 0.5

reaches larger values at such a tz that D12 is immeasurable, which means that T1, T2
are virtually equal (measured in experiment) and R21 = 1 consequently, which has no
use in the measurement.

At H ≤ 0.1 and ax/az = 5, the optimal values are �̄b = 0.2 and x̄ = 0.8. Then,
S21 max ≈ 0.6. (We have excluded the larger values of x̄ from the investigation because
of the possible influence of heat losses from the lateral surfaces of the sample.) If we
consider S21 max ≈ 0.3 sufficient, then �̄b = 0.1 and x̄ = 0.2 are the optimal values
in general. In any case, functions R21 and R23 reach values around 0.5 at the optimal
�̄b and x̄ . Thus, these parts of R21 and R23 are crucial for the determination of the
diffusivities.

As az ≈ 10−7m2 · s−1, e ≈ 10−3m, and t = e2

az
tz (see Eq. 5), then t ≈ 10tz . If

ax/az = 0.2 and H = 1, then tz S21 max = 1.31 and tz S23 max = 0.17. If ax/az = 1
and H = 1, then tz S21 max = 0.26 and tz S23 max = 0.17. If ax/az = 5 and H = 1,
then tz S21 max = 0.05 and tz S23 max = 0.17. If ax/az = 0.2 and H = 0.1, then
tz S21 max = 1.31 and tz S23 max = 0.19. These are all reasonable times.

To compute the diffusivity ax at the optimal �̄b and x̄ , we use the method of least
squares for Eq. 8. Let N be the number of measured points [ti , T1 (ti )], [ti , T2 (ti )],
and [ti , T3 (ti )]. We are looking for the value of ax at which the sum,
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Fig. 12 Functions �1, �2, �3, R21, S21, D12, R23, S23, D23 at e/b = 0.2, H = 0.1, ax /az = 5,
ay/az = 1, �̄b = 0.1; normal line: x̄ = 0.1, small-dotted line: x̄ = 0.2, dotted line: x̄ = 0.3, dashed line:
x̄ = 0.4, dashed-dotted line: x̄ = 0.5, dashed-dotted-dotted line: x̄ = 0.6

N∑
i=1

⎡
⎢⎣1 + 2

∑∞
k=1 cos (kπ x̄)

sin(kπ�̄b)
kπ�̄b

exp
(
−π2k2 ax ti
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⎥⎦

2

(12)

is a minimum.
To compute az and H , we use the method of least squares on Eq. 9, i.e., we are

looking for the values of az and H at which the sum,

N∑
i=1

⎡
⎣

∑∞
n=1 an

[
cos (un) + H

un
sin (un)

]
exp

(
−u2

n
az t
e2

)
∑∞

n=1 an exp
(
−u2

n
az t
e2

) − T2 (ti )

T3 (ti )

⎤
⎦

2

(13)

is a minimum. The minimum problems are readily solvable by a PC program.
Here we note that the initial temperature of the sample has a non-zero value in a

real experiment despite the fact that the theory assumes that it is zero. This so-called
baseline temperature has to be taken into account in the data reduction. Our practical
experiences show that it is better to estimate the baseline temperature and recalculate
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Fig. 13 Functions �1, �2, �3, R21, S21, D12, R23, S23, D23 at e/b = 0.2, H = 0.1, ax /az = 5,
ay/az = 1, �̄b = 0.2; normal line: x̄ = 0.2, small-dotted line: x̄ = 0.3, dotted line: x̄ = 0.4, dashed line:
x̄ = 0.5, dashed-dotted line: x̄ = 0.6, dashed-dotted-dotted line: x̄ = 0.7, normal line: x̄ = 0.8

the experimental temperature rise data prior to calculation than to obtain the baseline
temperature by a least squares fitting.

4 Conclusions

This article describes a method for simultaneous measurements of the thermal diffusiv-
ities ax , ay , az of an orthotropic material. The method assumes a parallelepiped-shaped
sample of square faces, thickness/width ratio=0.2, heated on the front face on a coax-
ial square. The length of the side of the square is 10 % of the length of the side of
the face. The temperature is measured at five points: in the center of the rear face, on
the principal axes of the front face outside the heated area, and right opposite on the
principal axes of the rear face (one rear central thermocouple and two front–rear pairs
of thermocouples). The distance of the front sensor from the edge of the heated area
is 20 % of the length of the side of the sample face.

Diffusivities ax and ay are computed using the method of least squares for the differ-
ences between the theoretical and experimental values of the ratio of the temperature
on the corresponding principal axis and in the center—both on the rear face.
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Fig. 14 Functions �1, �2, �3, R21, S21, D12, R23, S23, D23 at e/b = 0.2, H = 0.1, ax /az = 5,
ay/az = 1, �̄b = 0.3; normal line: x̄ = 0.3, small-dotted line: x̄ = 0.4, dotted line: x̄ = 0.5, dashed line:
x̄ = 0.6, dashed-dotted line: x̄ = 0.7, dashed-dotted-dotted line: x̄ = 0.8

The thermal diffusivity az and the Biot number H can be obtained using the method
of least squares over the theoretical and experimental values of front/rear temperature
ratio on each principal axis of the faces. We get two values for either az or H , and we
take the average of them for the exact value.
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